
Derivative Accumulation on Terminal Series-Parallel Graphs

Andrew Lyons

Computation Institute, University of Chicago,

5640 S. Ellis Avenue, Chicago, IL 60637

lyonsam@gmail.com

December 20, 2008

Abstract

The process of accumulating the Jacobian matrix J for a function F can be described by an
arithmetic circuit that computes the nonzero entries of J. The minimal nodes in the circuit are
the local partial derivatives which label the edges of a directed acyclic graph G that represents
a procedure for evaluating F. We give a polynomial time algorithm that finds all circuits with
a minimum number of nodes for a particular class of directed acyclic graphs defined by a
recursive construction procedure. We also characterize this class in in terms of the structure of
the corresponding optimal accumulation circuits.

TODO:

• Do I need to show that this minimizes multiplications as well?

1 Introduction and motivation

The accumulation of derivatives by means of automatic differentiation is a compute-intensive task.
Naumann has shown in [?] (by reduction from Ensemble Computation [2]) that optimal

accumulation of derivatives is an NP-complete problem, but the proof requires that algebraic de-
pendences among the local partials exist. Throughout this paper, we assume that all local partials
are algebraically independent. Furthermore, we don’t allow edge rerouting operations. We might
say that we are limited to ”chain rule-based” methods of accumulation. The complexity of deriva-
tive accumulation under these restrictions has long been conjectured to be NP-complete, but no
proof currently exists.

The main result of this paper is an algorithm that solves this problem for functions whose
evaluation procedure admits a particular structure. The class of series-parallel graphs can be
recognized in linear time.

In Sec. 2 we introduce the optimal Jacobian accumulation problem and provide background.

2 Linearized computational graphs and Bauer’s formula

We consider vector functions of the form

y = F (x), F : R
n → R

m

1



that map a vector x = (xi)i=1,...,n of independent variables to a vector y = (yi)i=1,...,m of dependent
variables. We assume that F is given as an implementation in computer code, or, more generally,
as an evaluation procedure that can be decomposed into a sequence of elementary assignments

vi−n = xi } i = 1 . . . n
vi = ϕi(vj)j≺i } i = 1 . . . l

ym−i = vl−i } i = m − 1 . . . 0
(1)

where each ϕj is assumed to be continuously differentiable and the precedence relation ≺ is defined
by j ≺ i ⇔ vj is an argument of ϕi. We will refer to F and a given evaluation procedure for F
interchangably. The variables vj represent real values that are computed during an evaluation of
F at a particular argument x0. Automatic (or algorithmic) differentiation (AD) works by algorith-
mically applying the chain rule to F in order to produce a new function F+ that computes not
only y for a given argument x0 but also some derivative information for F . In the context of this
paper, we will be generating a sequence of statements that yields the entries of the Jacobian matrix
F ′(x0). We follow the notation in the standard reference [3] throughout.

Example. Consider the vector function F : R
2 → R defined by

y = sin(x1 ∗ x2) ∗ x1 ∗ x2 ∗ cos(x1 ∗ x2). (2)

v−1 = x1

v0 = x2

v1 = v−1 ∗ v0 c1,−1 = v0 c1,0 = v−1

v2 = cos(v1) c2,1 = - sin(v1)
v3 = sin(v1) c3,1 = cos(v1)
v4 = v1 ∗ v2 c4,1 = v2 c4,2 = v1

v5 = v3 ∗ v4 c5,3 = v4 c5,4 = v3

y = v5

0

1

2

3

4

5

6

a

b

c

d

e

f

g

h

i

(a) (b)

Figure 1: A linearized evaluation procedure for F (a) and the corresponding LCG G (b).

An evaluation procedure for F is shown in Fig. 1(a). We say that an evaluation procedure is
linearized when it has been augmented to include assignments for the local partial derivatives

ci,j ≡
∂

∂vj

ϕi(vj)j≺i, i = 1, . . . , l + m.

In the context of numerical programs (where AD is most often applied), an AD compiler will add the
statements for the local partials ci,j, which can easily be generated when ϕi is a basic differentiable
mathematical function (such as +,−, ∗, /, sin, cos, exp, etc.).

The dependence relation ≺ on the variables induces a directed acyclic linearized computational
graph (LCG) G = (V,E) whose vertex set V = (X,Y,Z) comprises the set X = {1 − n, . . . , 0} of

2



independent vertices, the set Y = {l+1, . . . , l+m} of dependent vertices, and the set Z = {1, . . . , l}
of intermediate vertices. There is an edge from j to i in G if and only if vi ≺ vj . For a vertex i ∈ V
we denote the predecessor set {j : vj ≺ vi} of i by Pi and we denote the successor set {h : vi ≺ vh}
of i by Si. The edges (j, i) ∈ E are labeled with their respective local partial derivatives ci,j.

Baur and Strassen showed in [1] that in terms of G, the entries of the Jacobian matrix can be
computed as

f ′

j,i ≡
∂yj

∂xi

=
∑

[i→j]∈G

∏

cl,k∈[i→j]

cl,k , (3)

where [i → j] denotes a path in G from vertex k to l. In other words, f ′

j,i is the sum of the products
of local partials along each path from i to j in G. Directly applying this formula (in a naive way)
to our example function F would mean computing

F ′ =
(

c1,−1c3,1c5,3 + c1,−1c4,1c5,4 + c1,−1c2,1c4,2c5,4 c1,0c3,1c5,3 + c1,0c4,1c5,4 + c1,0c2,1c4,2c5,4

)

,

at a cost of 4 additions and 14 multiplications.
The properties of the chain rule result in a great deal of freedom in how the entries of F ′ are

accumulated from the local partials ci,j . We are interested in generating an optimal evaluation
procedure for F ′ in terms of the computational cost. More formally, we are interested in solving
the following problem (stated as a decision problem):

Problem 1. Optimal Jacobian Accumulation (OJA)
Given an LCG G for the evaluation procedure for some vector function F as defined in Eqn. (1)

and a positive integer Ω, is there a sequence of scalar assignments uk = sk ◦ tk, ◦ ∈ {+, ∗}, k =
1, . . . , ω, where each sk and tk is either ci,j for some (j, i) ∈ E or uk′ for some k′ < k such that
ω ≤ Ω and for every Jacobian entry there is some identical uk, k ≤ ω?

We might view the collection of accumulation statements as an arithmetic circuit Aj called the
accumulation circuit. To avoid confusion, we will refer to the elements of AJ as nodes, and elements
of G as vertices. AJ is a directed acyclic graph whose nodes have either 0 or 2 inedges. Nodes with
0 inedges correspond to the local partials ci,j , and the other nodes are gates labeled with operations
from {+, ∗}. The nodes without outedges correspond to the nonzero entries in the Jacobian J . We
may interpret OJA as the problem of finding an accumulation circuit with minimum size, where
the size of AJ is the number of gates.

The underlying graph of a dag G is the undirected graph obtained by removing the direction
from all the edges.

3 Series-parallel dags

Definition 1 (Two-terminal series-parallel (TTSP)).

(i) A dag consisting of a single edge is TTSP.

(ii) series composition: Let G1 and G2 be TTSP dags. The dag that results from identifying the
input of G1 with the output of G2 is TTSP.

(iii) parallel composition: Let G1 and G2 be TTSP dags, at least one of which contains more than
one edge. The dag that results from identifying the input of G1 with the input of G2 and the
output of G1 with the output of G2 is TTSP.

3



This recursive definition is the definition in [] of edge series-parallel multidigraphs. Note that
we don’t allow parallel edges in LCGs; for example, the graph formed by performing a parallel
composition between two isolated edges would not be an LCG.

Definition 2 (Output-terminal series-parallel (OTSP)).

(i) A dag G is OTSP if G is TTSP.

(ii) series composition: Let G1 be a TTSP dag and let G2 be a OTSP dag. The dag that results
from identifying the input of G1 with the output of G2 is OTSP.

(iii) output composition: Let G1 and G2 be OTSP dags. The dag that results from identifying the
output of G1 with the output of G2 is OTSP.

The class of input-terminal series-parallel dags (ITSP) is defined analogously. We say that a
dag is terminal series-parallel (TSP) if it is OTSP or ITSP.

Throughout the remainder of this paper, we will assume that the underlying graph of G is
connected; it is clear that each connected component can be treated separately. Furthermore,
we assume that all TSP dags are either TTSP or have been constructed with the last operation
being a series composition. In case of a TSP dag G that is not TTSP and the final construction
operation was an output composition (or input composition) with G1 and G2, we may treat G1

and G2 separately, as no path in G can contain edges from both G1 and G2, thus any JAC for G
will consist of multiple disjoint components.

3.1 Example

The optimal vertex elimination sequences for the LCG shown in Figure 2(a) are (3, 2, 4, 1), (2, 4, 3, 1),
and (2, 3, 4, 1). Each has a cost of five multiplications.

-1 0

1

2

3

4

5

a
b

c

d

e

f

g
h

P

PP

1

2

3 4
a b

c

de

fg h

J5,−1 = a(fg + (c + de)h)
J5,0 = b(fg + (c + de)h)

(a) (b) (c)

Figure 2: A TTSP dag G (a) and the corresponding decomposition tree T (b).

4 Solving OJA on TSP dags

The following algorithm is robust [4] in the sense that given any dag G it either finds an optimal
JAC or provides a certificate that G is not TSP.

4



Algorithm 1.

Input: A dag G.
Output: A Jacobian accumulation circuit AJ if G is TSP, the reply NO if G is not TSP.

1. Return NO if G has more than one input or more than one output.

2. Eliminate all intermediate vertices v with |Pv| ∗ |Sv| = 1, resulting in a new graph G′.

3. Check whether G′ has the form of a rooted tree. If not, return NO.

4. Eliminate all intermediate vertices v from G′ as follows.

• If G′ is OTSP, then recursively eliminate all predecessors of the sole output vertex.

• If G′ is ITSP, then recursively eliminate all successors of the sole input vertex.

Lemma 1. Algorithm 1 will return NO if and only if G is not TSP.

Proof. (⇒): It is obvious that G is not TSP if it contains more than input and more than one
output. Let G′ be the dag that results from eliminating all vertices with one inedge and one outedge,
where the algorithm returns NO because G′ does not have the form of a rooted tree. Note that all
intermediate vertices in G′ have either more than one inedge or more than one outedge, and there
is at least one semicycle.

(⇐): Assume G is not TSP, and G has either one input or one output (otherwise, the algorithm
would return NO trivially). Without loss of generality, assume G has only one output.

4.1 Polytree accumulation circuits

A dag G is a polytree if its underlying graph is a tree (an undirected graph without cycles).

Definition 3 (semi-valid Jacobian Accumulation Circuit). a semi-valid JAC for a dag G is a
directed acyclic graph where every node has exactly zero or two children. Let x be some input in G
and let y be some output in G, then the Jacobian node xy must be reachable from all local partial
nodes that correspond to edges that occur on some path from x to y in G. In other words, we don’t
associate the non-minimal nodes with particular operations, and we relax the requirement that AJ

correctly computes the Jacobian.

Obviously,

Theorem 1 (characterization of TSP dags). A dag G is TSP if and only if G has a Jacobian
accumulation circuit that is a polytree.

Proof. (⇒) Let G be a TSP dag. We will show that any Jacobian accumulation circuit AJ produced
by Algorithm 1 will be a polytree.

(⇐) Let AJ be a polytree JAC. . .

Lemma 2. Let G = (V,E) be a TTSP dag. Then all polytree JACs AJ for G have size |E| − 1.

Proof.

5



Lemma 3. Let G = (V,E) be a TSP dag. Then all polytree JACs AJ for G have the same size.

Proof. If G is TTSP, then all polytree JACs for G have size |E| − 1 by Lemma 2.
If G is not TTSP, then assume G was constructed by the series composition of some TTSP dag

G1 = (V1, E1) and some OTSP dag G2 = (V2, E2) where G2 has more than one input. Since the
local partials in E1 contribute to

Lemma 4. Let G be a TSP dag, and let AJ be a JAC for G. Then AJ has minimum size if and
only if AJ is a polytree.

Proof. We will show that any JAC for G that is not a polytree is strictly larger than any polytree
JAC for G. We use the fact that Algorithm 1 always produces a polytree JAC that correctly
accumulates the Jacobian whenever the input graph G is TSP.

(⇒) Suppose that AJ contains two distinct paths Pa = (u = a0, a1, . . . , ai = v), Pb = (u =
b0, b1, . . . , bj = v) that honor the orientation on the edges, where it is assumed without loss of
generality that a1 6= v. Let S be the set of all parents of a1 and let t be the child of a1 that is not
u. Observe that every s ∈ S can be a parent of u or t, but not both. Consider the JAC A′

J that
results from removing a1 and adding a new inedge for every s ∈ S from either u or t, such that
evert s ∈ S has exactly two inedges. It is clear that A′

J has fewer nodes than AJ , contradicting the
assumed minimality of AJ .

Any cycle in the underlying graph of AJ that is not of the above type will violate the orientation
on the edges in some way.

(⇐) For the sake of contradiction, assume that AJ is not a polytree.

The combination of Theorem 1 and Lemma 4 implies the following theorem.

Theorem 2. Algorithm 1 solves OJA for TSP dags.

Proof. . . .

5 General Series-Parallel Dags

Further generalizing to general series-parallel graphs, we find that JACs derived from the decom-
position tree can lead to sub-optimal accumulation sequences. This graph also illustrates the fact
that the Markowitz heuristic is not optimal for all series-parallel graphs.

a b c

d

e

f g

S

S

P

PP

a b c

d

e f g

(a) (b)

Figure 3: a SP LCG (a) and its canonical decomposition tree (b)

6



6 Conclusions

It has not yet been shown that Optimal Jacobian Accumulation = Optimal Face Elimina-

tion, and it is clear that this is not the case when algebraic dependences between the local partial
derivatives are allowed.

It is possible that elimination techniques applied to the comparability graph of P could be
shown to be general enough to encompass all of OJA, and this could be used to show that certain
algorithms solve OJA for particular subclasses of LCGs.

Observation 1. Let G be a SP dag. Then G is a polytree if G is absorption-free.

Future research:

• OJA on polytree SP dags.

• OJA on (general) SP dags

References

[1] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Computer
Science, 22:317–330, 1983.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP–Completeness. Freeman, San Francisco, 1979.

[3] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.

[4] Vijay Raghavan and Jeremy Spinrad. Robust algorithms for restricted domains. J. Algorithms,
48(1):160–172, 2003.

7


